Numerical integration techniques for discontinuous manufactured solutions
نویسندگان
چکیده
Article history: Received 14 January 2014 Received in revised form 14 August 2014 Accepted 23 August 2014 Available online 27 August 2014
منابع مشابه
Nodal High-Order Discontinuous GalerkinMethods for the Spherical ShallowWater Equations
We develop and evaluate a high-order discontinuous Galerkin method for the solution of the shallow water equations on the sphere. To overcome well known problems with polar singularities, we consider the shallow water equations in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the spherical surface. The global solutions are represen...
متن کاملInterior Penalty Discontinuous Galerkin Methods with Implicit Time-integration Techniques for Nonlinear Parabolic Equations
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin (IPDG) methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l(H) and l(L) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin (SIPG) scheme with the implicit θ-schemes in time...
متن کاملRobust Simulation of a TaO Memristor Model
This work presents a continuous and differentiable approximation of a Tantalum oxide memristor model which is suited for robust numerical simulations in software. The original model was recently developed at Hewlett Packard labs on the basis of experiments carried out on a memristor manufactured in house. The Hewlett Packard model of the nano-scale device is accurate and may be taken as referen...
متن کاملA discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries
We present a discontinuous Galerkin method (DGM) for solutions of the Euler equations on Cartesian grids with embedded geometries. Cartesian grid methods can provide considerable computational savings for computationally intensive schemes like the DGM. Cartesian mesh generation is also simplified compared to the body fitted meshes. However, cutting an embedded geometry out of the grid creates c...
متن کاملError estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws
In this paper, we focus on error estimates to smooth solutions of semi-discrete discontinuous Galerkin (DG) methods with quadrature rules for scalar conservation laws. The main techniques we use are energy estimate and Taylor expansion first introduced by Zhang and Shu in [24]. We show that, with P k (piecewise polynomials of degree k) finite elements in 1D problems, if the quadrature over elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 278 شماره
صفحات -
تاریخ انتشار 2014